
© NISHI, Yasuharu

Design principles
in Test Suite Architecture

InSTA 2015

(International workshop on Software Test Architecture)

Graz, Austria 2015/4/13(Mon)

Nishi, Yasuharu

The University of Electro-Communications, Japan

© NISHI, Yasuharu2

Software Test Engineering Process

• As software has got huge and complicated,
test cases (= test suite) also get huge and complicated
– such as

» a test project with over 100,000 test cases

» over 10 test levels

» various test types such as load, configuration and security

– You have to develop huge and complicated test suite systematically

• But technologies on test planning or test strategy
are just immature
– Engineering work and management work for test development are confused

• It is necessary to define software test engineering process
to develop huge and complicated test suite systematically

© NISHI, Yasuharu3

Test “system” architecture and test “suite” architecture

• UTP defines ‘test architecture’
as test “system” architecture
– UTP: UML Test Profile

– Architecture for software development has
two types as software architecture
and system architecture

» Software architecture focuses on software inside

» System architecture focuses on execution environment

– The concept of ‘test architecture’ of UTP
focuses not only on architecture of test suite
but rather on execution environment including automation

» In other words,
UTP mainly focuses on Test “system” architecture
but we should also research on Test “suite” architecture

– The concept of Test Architecture in this presentation
is test “suite” architecture

© NISHI, Yasuharu4

VSTeP

• VSTeP(Viewpoint-based Software Test Engineering Process)
is a generic test engineering process model
focusing on test viewpoint
– You can stress upper phase of test engineering process such as

test requirement analysis and test architecture design
which tend to be negligent

– VSTeP drives you to good test suite, good review for test design,
accumulation of knowledge and experience on testing

– Reuse and improvement will be easy because you can do
reverse-engineering of your past (unorganized) test suite

– NGT (Notation for Generic Testing) is a made-in-Japan notation
for Test Requirement Analysis and Test Architecture Design
» Modeling skill like object-oriented design is essentially necessary

Test
Architecture

Design

Test
Requirement
Analysis

Test
Detail
Design

Test
Implementation

VSTeP: Viewpoint-based Test Process

Test Management (including planning for management)

© NISHI, Yasuharu5

Detail phase of VSTeP

• TRA: Test Requirement Analysis
– To make a test requirement model

» To extract, organize and understand test requirement
» To create a test requirement model which consists of test viewpoints,

i.e. to create a viewpoint diagram

• TAD: Test Architecture Design
– To make a test architecture model

» To re-organize test viewpoints into test containers
as test types, levels and cycles for making test smooth

» To assemble test viewpoints into test frames which is template for TDD

• TDD: Test Detail Design
– To make test cases

» To set values in detail into test frames or test viewpoints

• TI: Test Implementation
– To make test scripts

» To add detail information necessary to execution to test cases
» To combine simple test scripts into a compound test script

for making execution efficient

© NISHI, Yasuharu6

Example of part of viewpoint diagram drawn for TRA

E-mail client

GUI Functions Environment Data

Platform Network

OS Hardware

Kind of OS Version of OS Internet Explorer

Test Item / SUT

© NISHI, Yasuharu7

What is test viewpoint: abstract test case

• Test cases has test values
– ex) parameter: Kind of OS, values: Win7, WinXP, Win2000

– Test parameters are also called as test conditions
and test values are also called as test coverage items

– Test cases consists of test values

• Viewpoints are abstract test cases
– Bottom viewpoints means test parameters

– Viewpoints don’t express
any test values or test cases

– Viewpoints can have hierarchical structure
like classification trees or class diagrams

– Viewpoints can be extracted from
test conditions, test items and quality characteristics
such as load, configuration and performance

– Ideally viewpoints should indicate
an INTENTION of a test case
» Viewpoint diagram can be a repository of intentions of TCs

Kind of OS

OS

Platform

Environment

- Win7
- WinXP
- Win2000

Test

Cases

Bottom
viewpoint

Viewpoint

Viewpoint

© NISHI, Yasuharu8

Various test viewpoints

– What should be exhausted:
» Specs, functions, data etc.

» Test conditions

– Characteristics which should be
achieved
» Quality characteristics, non

functional requirements etc.

– Parts of test items
» Funcs, Subsystems, modules etc.

– Bugs
» Errors and failures, bug patterns,

weak points of test items etc.

– Customer usage
» Business, lifestyle etc.

– Other parts of systems than software
» Hardware units, hardware failures etc.

– Test types
» Load test, configuration test etc.

– Test levels
» Component test, system test etc.

– Lists and/or diagrams developed
until software testing
» Use cases, State transition diagrams etc.

• Test viewpoint is a point where test engineers focus
an attention for grasping a big picture of test design
– Test viewpoint is abstraction and source of test cases

• Types of test viewpoints depend on organizations
and/or test engineers

OS

© NISHI, Yasuharu9

• The word “viewpoint” is independent of roles

Why “viewpoint” ?

Test purpose

Requirement!

Test condition

Parameter

Test Environment

Analyst

Test Manager

CT Engineer

Test EngineerTest Operator

Charter?

Exploratory Tester

© NISHI, Yasuharu10

Types of Hierarchical relationship

• Test viewpoints have two fundamental relationships
– Hierarchy relationships and Interaction relationships
– Types of relationships can be expressed as “<<stereotype>>”

• Hierarchical relationships can bear several meanings
– is-a relationship: inheritance
– has-a relationship: possession
– There may be other hierarchical relationships

» object-attribute and cause-effect is example

OS

Windows Memory
Management
Subsystem

<<has-a>><<is-a>>

© NISHI, Yasuharu11

Interactive relationships of viewpoints

• Viewpoints can relate each other with interactive relationships
– Non-hierarchical relationships are necessary: Interactive relationships

– They can also bear several meanings: combination, sequential etc.

– Lines without arrowhead represent “combinatorial relationships”

– Arrows with an open head represent “sequential relationships”

– Relationships can represent their meanings with <<stereotype>>

– In this workshop interactive relationships without stereotypes represent
combinatorial relationship

Function Configuration

<<sequence>>

OS Web browser

<<combination>>

© NISHI, Yasuharu12

Relationships of viewpoints

• Test viewpoints have two fundamental relationships
– Hierarchy relationships

» Detail a viewpoint step by step to reach test coverage item with a straight line
» Have several types such as is-a, has-a, cause-effect, object-attribute

– Interaction relationships
» Connect test viewpoints to test combination of viewpoints with a curved line
» Have several types such as combination (needs combinatorial testing) etc.

• Types of relationships can be expressed as “<<stereotype>>”

OS

Version of OS

<<has-a>><<is-a>>

Interaction

Hierarchy

<<combination>>

Viewpoint

Filesystem

© NISHI, Yasuharu13

Notation of viewpoint diagram in NGT

© NISHI, Yasuharu14

Viewpoint diagram is simple enough

• Viewpoint diagram is simple enough
to make a TRA/TAD model
– More simple than classification tree

OS Web browser

OS Web browser

7 Vista IE Chrome Firefox

Classification Tree Viewpoint diagram

© NISHI, Yasuharu15

TRA: Test requirement analysis

• To extract, organize and understand test requirements
– Requirements from customers to achieve

» Functional requirement, non-functional requirement, business goals etc.

– Constraints to achieve requirement from customers
» Requirement of test project management such as efforts, costs etc.

» Test tools and/or methods directly requested by customer especially

– Information of current quality of the test item
» Ex) bugs which were detected in prior reviews

• To create a test requirement model on viewpoint diagram
– Extract test viewpoints from test requirements

– Detail test viewpoints and
connect parent viewpoint and child viewpoints

– Extract interaction relationships and
connect viewpoints

– Top-level viewpoints are most important
for grasping a big picture, called “View”

Views

© NISHI, Yasuharu16

Refinement of a test requirement model

• You can refine a test requirement model
to make it clear and easy to understand
– To detail viewpoints step by step to exhaust / list all test conditions

– To move, divide or rename viewpoints if necessary

– To check non MECE viewpoints in each layer
and re-organize them as MECE
» MECE: Mutually Exclusive and Collectively Exhaustive

– To check whether brotherhood viewpoints have
the same stereotypes of hierarchy connections

– To check whether interactions would be better to change viewpoints

© NISHI, Yasuharu17

VSTeP

• VSTeP(Viewpoint-based Software Test Engineering Process)
is a generic test engineering process model
focusing on test viewpoint
– You can stress upper phase of test engineering process such as

test requirement analysis and test architecture design
which tend to be negligent

– VSTeP drives you to good test suite, good review for test design,
accumulation of knowledge and experience on testing

– Reuse and improvement will be easy because you can do
reverse-engineering of your past (unorganized) test suite

– NGT (Notation for Generic Testing) is a made-in-Japan notation
for Test Requirement Analysis and Test Architecture Design
» Modeling skill like object-oriented design is essentially necessary

Test
Architecture

Design

Test
Requirement
Analysis

Test
Detail
Design

Test
Implementation

VSTeP: Viewpoint-based Test Process

Test Management (including planning for management)

© NISHI, Yasuharu18

TAD: Test Architectural Design using Test Containers

• Test architecture is a big picture of test suite
– It is easy to grasp a big picture in test container level

for large and complicated testing
– Several viewpoints can be packed into a “test container”
– Test containers can be test levels, test types and test cycles

Structure t.

Exception
handling
testing

Multi bytes
testing

Boundary
of arrays t.

Unit
testing

Module calling t.

Interruption
handling
testing

Shared
memory t.

Device
management t.

Security
testing

Environment
testing

System testing

Failure
mgmt
testing

Load t.

Function t.

Cycle 1

Load t.

Function t.

Cycle 2

Integration
testing

© NISHI, Yasuharu19

Test containers are tasks or not?

• ISTQB defines a test type as:
– a group of test activities aimed at testing a component or system focused

on a specific test objective, i.e. functional test, usability test, regression
test etc.

• ISTQB defines a test level as:
– a group of test activities that are organized and managed together. A

test level is linked to the responsibilities in a project. Examples of test
levels are component test, integration test, system test and acceptance
test

• ISO/IEC/IEEE 29119 defines a test sub-process as:
– test management and dynamic (and static) test processes used to

perform a specific test level (e.g. system testing, acceptance testing) or
test type (e.g. usability testing, performance testing) normally within the
context of an overall test process for a test project

• ISO/IEC/IEEE 29119 defines a test level and test type as:
– a specific instantiation of a test sub-process.

© NISHI, Yasuharu20

Differences between UTP and NGT

• UTP has a broader scope
while NGT focuses on just test suite architecture
– UTP can describe test system architecture and test suite architecture

• UTP can potentially have a descriptive power
as strong as NGT in test suite architecture
– TestContext in UTP is similar to a test viewpoint or a test container in NGT

– Concretion is necessary because TestContext is too generic

• There is no example on test suite architecture in UTP
– I’m wondering UTP can’t describe these or not:

» Hierarchy of TestContext

» Stereotype of combination

» Model on test container level

– Even if so, I hope UTP will be updated to describe those

» NGT will go “UTP test suite architecture profile” ☺

© NISHI, Yasuharu21

No Guides for good TAD

• Some characteristics, principles and patterns for software
can be applied as guides for good TAD
– “Quality Characteristics” for software are already available

such as ISO/IEC 25000s
» Functional Suitability / Performance efficiency / Compatibility / Usability

/ Reliability / Security / Maintainability / Portability

– Design principles and design patterns for software design are also major
» Coupling / Cohesion / Encapsulation / Responsibility
» Design patterns such as MVC, singleton

• This presentation introduces
10 design principles for Test Architecture
– Coupling / Cohesion
– Maintainability / Automatability
– Circumstance consistency / Development consistency
– Describability
– Design direction / Design positiveness
– Execution velocity consistency

© NISHI, Yasuharu22

10 Design Principles for Test Architecture

1. Coupling

2. Cohesion

3. Maintainability

4. Automatability

5. Circumstance consistency

6. Development consistency

7. Describability

8. Design direction

9. Design positiveness

10.Execution velocity consistency

These are not
“manual”

© NISHI, Yasuharu23

1. Coupling

• Test architect should reduce coupling
– If relationships

among test containers
unnecessarily increase,
test design will be
more complicated
and difficult to understand

– Responsibilities
or test objectives are
properly assigned
in the lower test architecture

– Test designer can easily
design combinatorial testing
for each test containers
in the lower test architecture

© NISHI, Yasuharu24

2. Cohesion

• Test architect should increase cohesion
– If test types or viewpoints are disorderly grouped, test design will be

more confusable and difficult to understand such as in the upper test
architecture applying the page object pattern.

– Responsibilities
or test objectives are
properly assigned
in the lower
test architecture

– Test designer
will not design
currency check
or typo check test
together with load test

© NISHI, Yasuharu25

3. Maintainability

• Test architect should consider and increase maintainability
– As test design itself needs frequent change, maintenance and enhancement

like software, it could be better to separate unstable part and stable part

» Web applications often need performance enhancement and its test

– Test designer can
easily specify
where to be changed

» It requires longer,
wider and broader
perspective

– Test suite has its own
“quality characterisitcs”

– Good maintainability
leads
productine engineering
of test suite

© NISHI, Yasuharu26

4. Automatability

• Test architect should consider and increase automatability
– Automatable test viewpoints should be isolated into the same test container

» Performance test can be automated with test tools

» I18n test needs human check with various nationality

– Test designer can
easily isolate
tests to be automated

» As without isolation
efficiency of
automation
will be left low,
managers will decide
to invest no money
into automation

© NISHI, Yasuharu27

What is “test level”?

• “Test level” is a mysterious word…
– Unit, integration, system and user acceptance are typical test levels

– Test managers usually consider them as a given or common knowledge
» E.g. according to a company standard or textbooks

» But definition of test level is rather ambiguous…

– Test architect has to design test levels for large-scale and complicated SUTs
» Modern test standard doesn’t define specific test levels as a given

» In agile development another kind of test levels might be possible

» design of test levels should follow design principles in test architecture

• We need design principles for test-level-like containers
5. Circumstance consistency

» Test architect should identify and assemble test viewpoints
which need specific environment into each test container

6. Development consistency
» Test architect should make test bases in a test container

consisitent with the same development phase

© NISHI, Yasuharu28

7. Describability

• Test architect should isolate non-descriptive test viewpoints
– test viewpoints should be arranged into test containers

according to how detail each test viewpoint needs to be described

• Non-descriptive tests are so important as descriptive tests
– Non-descriptive tests:

» Exploratory testing, user experience testing, penetration testing etc.

– Non-descriptive tests essentially works by learning and creativity

• Even in non-descriptive tests,
test viewpoints should be specified, designed and isolated
– Charters for exploratory testing, market segments for user experience testing

and threats for penetration testing are all test viewpoints and to be designed

– If non-descriptive tests are mixed with descriptive tests,
learning and creativity will be frustrated

© NISHI, Yasuharu29

8. Design Direction

• Test architect should balance the design directions
– Design has generally two directions: forward design and backward design

» Also called deductive/inductive or direct/inverse design

» FD is a design after investigation of specifications which the designs are based on

» BD is a design after investigation of behaviours which the designs result in

» When a test case forms “if X is input, Y will be output”,
FD considers X first and derives Y, while BD considers Y first and explores X

– Forward test design derives test cases from test conditions

» E.g. functional testing and load testing

» Forward test design tends to be too simple or superficial

– Backward test design derives test cases from expected results or checkpoints

» E.g. performance testing and usability testing

» Backward test design tends to be too difficult to design
or to include unintended omissions

© NISHI, Yasuharu30

9. Design positiveness

• Test architect should balance
positive design and negative design
– Design has generally two opposite thinking manners:

positive design and negative design

» Positive design is a design to accomplish all reqs or to cover all specifications

» Negative design is a design to avoid any problem or to detect bugs

– Positive test design tends to be too exhaustive due to a lot of detail or
combinatorial test cases, and are all for checking

– Negative test design tends to be unable to assure any quality explicitly,
and needs too much efforts due to exhaustive exploratory testing.

© NISHI, Yasuharu31

10. Execution velocity consistency

• Test architect should arrange “rhythm” of test team
– Test team has some rhythm in execution of test cases

» Some sub teams can have quick rhythm while others can have slow rhythm

– Disharmonious rhythms in the same team will frustrate the team members

» Unintended wait or unexpected rush tends to irritate them and to increase mistakes

– Rhythms are derived from test execution velocity

» Testing good quality SUT makes quick rhythm with high motivation

» Testing poor quality SUT makes slow rhythm with deep consideration
on exploring more bugs, specifying locations of bugs more accurately
and writing better bug reports

– Allocation of test containers according to execution velocity
can lead good test architecture

© NISHI, Yasuharu32

Conclusion

• Test (suite) Architecture Design is important
for large-scale and complicated SUT
– NGT is a notation more focusing on TAD than UTP

– In NGT, test containers are fundamental component of test architecture

• No guides for good TAD
– Quality characteristics, design principles and patterns can be applied to

guides for good TAD

• This presentation have introduced
10 design principles for test architecture design
– Coupling / Cohesion / Maintainability / Automatability / Circumstance

consistency / Development consistency / Describability / Design direction
/ Design positiveness / Execution velocity consistency

• Quantitative research will be necessary for future

© NISHI, Yasuharu

Thank you for your kind attention

NISHI, Yasuharu

http://qualab.jp/

Yasuharu.Nishi@uec.ac.jp

© NISHI, Yasuharu34

Profile – Dr. NISHI, Yasuharu

Assistant professor:
the University of Electro-Communications, Japan
(also providing consultancy service to industry on testing and TQM)

President:
Association of Software Test Engineering, Japan (ASTER)

President:
Japan Software Testing Qualifications Board (JSTQB)

National delegate:
ISO/IEC JTC1/SC7/WG26 Software testing

Founder:
Japan Symposium on Software Testing (JaSST)

Founder:
Testing Engineers’ Forum (Japanese community on software testing)

Vice chair:
SQiP/Software Quality Committee of JUSE (promoting organization of TQM)
(SQiP has published the book of “SQuBOK: Software Quality Body of Knowledge”
and is operating engineer certification on software quality)

Research interest:
Software testing, software quality/TQM , embedded software engineering,
software process improvement, software project management, system safety

